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Abstract

In this paper, we consider constrained multicriteria continuous location problems in two-dimensional spaces. In the literature, the
continuous multicriteria location problem in two-dimensional spaces has received special attention in the last years, although only
particular instances of convex functions have been considered. Our approach only requires the functions to be strictly quasiconvex
and inf-compact. We obtain a geometrical description that provides a unified approach to handle multicriteria location models in
two-dimensional spaces which has been implemented in MATHEMATICA.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Considering uncertainty in Operations Research models is a core problem nowadays. A number of problems that
we find in the real-world present elements which escape the control of the decision maker. The uncertainty is often
originated by the impossibility of choosing only one scenario where the problem is likely to occur or because it is
unclear which objective function should be optimized. In both cases, the necessity of finding “good” solutions for
different criteria (scenarios), rather than for only one can be addressed considering multicriteria problems.

The constrained multicriteria location problem in a space X can be written, in great generality, as

v − min
y∈Y

(F1(y), . . . , Fk(y)),

where v − min stands for vector minimization, F1(·), . . . , Fk(·) : X −→ R represent the different criteria and Y ⊆ X

the feasible region.
A well-known multicriteria model in Location Theory is the Point-Objective location problem. It can be considered

as a particular instance of the above formulation where each function Fi(·)=�(·−ai), being A={a1, . . . , ak} the set of
demand facilities of a location problem, and �(· − ai) the function that measures the distances to ai . The unconstrained
version of this problem, Y = X = R2, was dealt firstly in [1] for the l2-norm. Later, [2] solved this problem for
polyhedral gauges. Other references devoted to study modifications of the Point-Objective location models are [3–13],
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among others. It is worth noting that from the above references only [3–8,11] consider the constrained case. Moreover,
these references study the particular case of the Point-Objective location problem where distances are measured with
the same norm. Only [6,7] analyze the constrained Point-Objective location problem with different norms but their
goal is to characterize solutions in location problems with voting criteria.

The unconstrained version of the multicriteria problem being Fi(·), for i = 1, . . . , k, weighted sums of the distances
measured with the l1-norm (Weber problem with the Manhattan norm) in R2, was solved by Hamacher and Nickel
[14]. The problem where the functions, Fi(·) for i = 1, . . . , k, are weighted sums of distances measured with any norm
was studied by Puerto and Fernández [15,16]. In addition, [17] considered a quadratic bicriteria location model. Again,
the reader can see that these references only deal with the unconstrained case.

The multicriteria location problem with regional demand and objective functions Fi(·), for i = 1, . . . , k, being
inf-distance functions (recall that inf-distance means distance to the closest point of each demand set) was solved by
Rodríguez-Chía [18]. Refs. [19,20,29] give a geometrical characterization of a general multicriteria problem where
the objective functions are only restricted to be convex. In order to do that the authors reduce the original problem
to resolve multicriteria subproblems involving a lower number of objective functions. However, this characterization
does not provide a geometrical construction of the nondominated solutions for constrained multicriteria problems.

Scanning the literature, we can see that the multicriteria location problem has received special attention in the last
years, (see [21, Chapter 19] for a survey on multicriteria location problems). However, there is a lack of a common
geometrical description of the nondominated solution set for the constrained version of these problems. In this paper, we
develop a unified approach to solve constrained continuous multicriteria location problems in two-dimensional spaces
with strictly quasiconvex inf-compact functions. The novelty of the results in this paper, within the location analysis
field, is to provide a methodology to handle multicriteria location problems with different norms at the different demand
points. Despite of the generality of the considered problem, the results obtained in this paper are easy to understand
and the proofs basically rely on Convex Analysis tools. Our results are not only at the theoretical level. Instead, they
allow to actually construct the complete solution set. In this regard, we also provide examples that illustrate the results,
and we relate these results with the existing ones, showing that our characterization unifies different known results in
the literature.

The paper is organized in five sections. In the second section we present the model and the notation used throughout
the paper. In Section 3, we give a characterization of the nondominated solution set of the bicriteria constrained problem.
In Section 4, we analyze the three-criteria and the general k-criteria problem. For the sake of readability, the proofs of
several technical lemmas are deferred to the Appendix. The Appendix also includes the implementation of our results
for the bicriteria problem, as well as details of the resolution of the examples using this code. Finally, Section 5 is
devoted to the concluding remarks.

2. The model

We consider F1, . . . , Fk : R2 −→ R a finite set of strictly quasiconvex, inf-compact functions which represent
different criteria or scenarios, and a closed, convex, feasible region Y ⊆ R2 (see [4] for further analysis with nonconvex
feasible regions). Recall that a real function f (·) is said to be inf-compact if its lower level sets {x : f (x)��} are
compact for any � ∈ R, notice that a lower semicontinuous function bounded on each compact set is inf-compact. Our
goal is to find the set of points y ∈ Y such that there is no z ∈ Y that improves the value of Fi(y) for all i = 1, . . . , k.
This problem can be formulated as finding the set of weakly efficient solutions to the following vector minimization
problem:

v − min
y∈Y

(F1(y), . . . , Fk(y)). (1)

We let WE(F1, . . . , Fk; Y ) denote the nondominated solution set for this problem defined by

WE(F1, . . . , Fk; Y ) := {y ∈ Y : ∀z(�= y) ∈ Y : ∃Fi for some i = 1, . . . , k with Fi(y)�Fi(z)}.

In the case Y = R2 (unconstrained case) we drop the reference to the constraint and therefore it is denoted by
WE(F1, . . . , Fk). Usually, this set is called the set of weakly efficient points.
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In order to improve the readability, we include below some concepts and the notation used throughout the paper.
The lower level set of the function F(·) for a value � ∈ R is the set L� (F, �) := {x ∈ R2 : F(x)��}, the strict lower
level set is L<(F, �) := {x ∈ R2 : F(x) < �}, and the level set L=(F, �) := {x ∈ R2 : F(x) = �}.

For a strictly quasiconvex, inf-compact function Fi(·) we will use the notation

X∗(Fi) := arg min
x∈R2

Fi(x), (2)

to refer to its set of minimizers. It should be noted that this set is closed and convex.
For two functions, Fi(·) and Fj (·), with i, j ∈ {1, . . . , k}, let

I
�
ij (x) := L� (Fi, Fi(x)) ∩ L� (Fj , Fj (x)),

I<
ij (x) := L<(Fi, Fi(x)) ∩ L<(Fj , Fj (x)),

I=
ij (x) := L=(Fi, Fi(x)) ∩ L=(Fj , Fj (x)).

The tangent cone TB(x) to the set B at point x is

TB(x) := cl(cone(B − x)), (3)

where for any set S, cl(S) stands for the topological closure of S. In addition, for a general closed set A ⊂ R2 we
denote by �(A) the boundary of this set, ri(A) its relative interior and int(A) its interior. For two points x and y, we
let xy denote the segment defined by x and y. Finally, for a strictly quasiconvex, inf-compact function we define the
projection of F(·) onto the closed set A as

proj
A

(F ) = arg min
a∈A

F(a).

In the next sections we obtain a geometrical characterization of the nondominated solutions for Problem (1). Before
that, we give a basic result stating a necessary and sufficient condition for a point to be weakly efficient. A similar result
can be found in [22,23], therefore we omit its proof.

Theorem 2.1. For a point y ∈ Y , the following conditions are equivalent:

1. y ∈ WE(F1, . . . , Fk; Y ),
2.
⋂k

i=1L<(Fi, Fi(y)) ∩ Y = ∅.

Notice that for k = 2 and Y = R2, this result provides a geometrical characterization of WE(F1, . . . , Fk; Y ) as the
set of tangent points between L=(F1, �) and L=(F2, �′) for �, �′ ∈ R.

In what follows, we will analyze the problem depending on the number of functions and on the relative position
between the solution set of the unconstrained problem and the feasible region.

3. The bicriteria problem

We start studying in this section a simpler version of Problem (1) with only two objective functions. We will show
later in Section 4 that the essential building blocks in obtaining the solution set WE(F1, . . . , Fk; Y ) are the simpler
sets WE(Fi, Fj ; Y ) for all i, j . For this reason, we concentrate in this section on the bicriteria case. Moreover, due to
its importance in building examples, we have developed an implementation in MATHEMATICA (see Appendix) that
illustrates the usefulness of the results.

To analyze the problem we distinguish two cases. The intersection of WE(F1, F2) and the feasible region Y is empty
or it is nonempty.

3.1. The case WE(F1, F2) ∩ Y = ∅

In this subsection we obtain a geometrical characterization of WE(F1, F2; Y ) when WE(F1, F2)∩Y =∅. Therefore,
we assume in the following that WE(F1, F2) ∩ Y = ∅.
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Definition 3.1. The set �(projY (F1), projY (F2)) is the connected path on the boundary of Y that satisfies:

(i) projY (F1) ∪ projY (F2) ⊆ �(projY (F1), projY (F2)).
(ii) �(projY (F1), projY (F2))\(projY (F1) ∪ projY (F2)) is a connected set.

(iii) Let C := WE(F1, F2) ∪ x∗
1y1 ∪ y1y2 ∪ x∗

2y2, with yi ∈ projY (Fi),x∗
i ∈ X∗(Fi) for i = 1, 2 and let encl(C) be

the bounded region encircled by C (notice that C ∩ encl(C) = ∅).
(a) If �(Y ) ∩ encl(C) = ∅ then y1y2 ⊆ �(projY (F1), projY (F2)).
(b) If �(Y ) ∩ encl(C) �= ∅ then �(projY (F1), projY (F2))\(projY (F1) ∪ projY (F2)) ⊆ encl(C).

Recall that given two points x and y, we let xy denote the segment joining these two points. By Lemma A.1 in the
Appendix, we have that this definition is well-stated. The following technical lemma the proof of which can be found
in the Appendix is needed to prove the main result of this subsection.

Lemma 3.1. Let y1, y2(y1 �= y2) ∈ �(Y )\(projY (F1) ∪ projY (F2)) such that F1(y1) = F1(y2), F2(y1)�F2(y2) and
L� (F1, F1(y1)) ∩ projY (F2) = ∅. If WE(F1, F2) ∩ Y = ∅ then

(i) y2 /∈ WE(F1, F2; Y ).
(ii) y2 /∈ �(projY (F1), projY (F2)).

The main result in this subsection states that the structure of WE(F1, F2; Y ) is described as a part of the boundary
of Y delimited by the minimizers of F1 and F2 on Y.

Theorem 3.1. If WE(F1, F2) ∩ Y = ∅, we have that

WE(F1, F2; Y ) = �(projY (F1), projY (F2)).

Remark 3.1. This result unifies for two-dimensional spaces previous characterizations in the literature. Taking Fi(x)=
‖x − ai‖ with ai ∈ R2 for i = 1, . . . , n, when ‖ · ‖ is the Euclidean norm we get Theorem 2 in [3], where the
constrained solution set is the orthogonal projection of the convex hull of ai ∈ R2, for i = 1, . . . , n. When ‖ · ‖ is a
strictly convex norm (the same with respect to the different existing facilities ai , i = 1, . . . , n) we get Theorem 1 in
[8], where the constrained solution set is the projection of the convex hull of the existing facilities using this norm.
When ‖ · ‖ is an arbitrary norm (but the same with respect to the different existing facilities ai , i = 1, . . . , n) we get
Theorem 4.2 in [11]. There, the constrained solution set is the projection of the unconstrained solution set. It should
be noted that these papers use the concept of projection with regard to the unique norm that appears in their objective
functions. However, in our model it is not possible to project the unconstrained solution set because different norms
(functions) are simultaneously considered. In Example 3.2, we illustrate how to obtain these characterizations applying
Theorem 3.1.

Proof. First of all, we prove that WE(F1, F2; Y ) ∩ int(Y ) = ∅. In order to do that, assume that there exists y ∈
WE(F1, F2; Y ) ∩ int(Y ). Since WE(F1, F2) ∩ Y = ∅ we have thaty /∈ WE(F1, F2); and it implies that I<

12(y) �= ∅.
Besides, using that y ∈ int(Y ) and the convexity of the level sets, we have that I<

12(y) ∩ Y �= ∅. Thus, Theorem 2.1
states that y /∈ WE(F1, F2; Y ). Hence, WE(F1, F2; Y ) ⊆ �(Y ).

On the other hand, we prove that projY (F1)∪projY (F2) ⊆ WE(F1, F2; Y ). This inclusion holds because there exists
no point z ∈ Y such that Fi(z) < Fi(y) ∀y ∈ projY (Fi) for i = 1, 2.

If it holds that projY (F1) ∩ projY (F2) �= ∅ then WE(F1, F2; Y ) = projY (F1) ∪ projY (F2) because any point of
Y\(projY (F1) ∪ projY (F2)) is dominated by any point of (projY (F1) ∩ projY (F2)). In this case, the result is proved
because �(projY (F1), projY (F2)) = projY (F1) ∪ projY (F2).

In what follows we assume that projY (F1) ∩ projY (F2) = ∅. Now, we prove that there are points on one side of the
boundary of Y in a neighborhood of projY (F1) which do not belong to WE(F1, F2; Y ). Let y1 ∈ projY (F1) and � > 0
be small enough such that L� (F1, F1(y1) + �) ∩ projY (F2) = ∅. Since projY (F1) ⊂ L� (F1, F1(y1) + �) ∩ �(Y ) there
exist two points y1, y2(y1 �= y2) ∈ L=(F1, F1(y1) + �) ∩ �(Y ) such that y1 is separated from y2 by projY (F1) in at
least one of the two paths on �(Y ) that join y1 and y2. (Without loss of generality we assume that F2(y1)�F2(y2).) By
Lemma 3.1 we have that y2 /∈ WE(F1, F2; Y ) andy2 /∈ �(projY (F1), projY (F2)).
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WE (F1,F2;Y)

Y

Fig. 1. Illustration of Example 3.1.

a1

a2

WE (F1,F2)

WE (F1,F2;Y)

Y

Fig. 2. Illustration of Example 3.2.

Notice that the same result can be obtained in a neighborhood of the appropriate side of projY (F2).
Hence, we have proved that there exist points of �(Y ) in a neighborhood of projY (F1) and projY (F2) that do not

belong to WE(F1, F2; Y ) nor to �(projY (F1), projY (F2)). Therefore, using the connectedness property of the solution
set (see [24]) and that WE(F1, F2; Y ) ⊆ �(Y ) we obtain that WE(F1, F2; Y ) = �(projY (F1), projY (F2)). �

Example 3.1. Let a1 = (7, 5), a2 = (18, 3) and let the feasible region, Y, be defined by the convex hull of the points
{(0, 0), (20, 0), (20, −7), (0, −7)}. Consider the functions F1(x) = ‖x − a1‖∞ and F2(x) = ‖x − a2‖1. Our goal is
to find the solution set WE(F1, F2; Y ). By Theorem 3.1, this set is determined by the path on the boundary of Y that
connects the projections of both functions onto Y, see Fig. 1. The solution set is depicted as the path of boundary of Y
drawn in thick line.

Example 3.2. Let a1 = (7, 5), a2 = (18, 3) and let the feasible region, Y, be defined by the convex hull of the points
{(0, 0), (20, 0), (20, −7), (0, −7)}. Consider the functions F1(x) = ‖x − a1‖2 and F2(x) = ‖x − a2‖2. Our goal is
to find the solution set WE(F1, F2; Y ). By Theorem 3.1, this set is determined by the path on the boundary of Y that
connects the projections of both functions onto Y, see Fig. 2. The solution set is depicted as the path on the boundary
of Y drawn in thick line. Notice that this set is the projection, with the l2-norm, of the convex hull of a1 and a2 or
equivalently, the projection of the solution set for the unconstrained problem.
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Level sets Tangent points(a) (b)

Fig. 3. Illustration of Example 3.3.

3.2. The case WE(F1, F2) ∩ Y �= ∅

In this subsection, we analyze the case where WE(F1, F2)∩Y is nonempty. In this case, if projY (F1)∩projY (F2) �= ∅
we have that the points in Y\(projY (F1) ∪ projY (F2)) are dominated by the points of projY (F1) ∩ projY (F2). Thus, we
have that WE(F1, F2; Y )=projY (F1)∪projY (F2). Therefore, in the following we assume that projY (F1)∩projY (F2)=∅.

Now we compute the set of nondominated points when that intersection is empty. Since �(Y ), projY (F1), projY (F2)

and WE(F1, F2) are closed connected sets, we have that the set �(Y )\(WE(F1, F2) ∪ projY (F1) ∪ projY (F2)) consists
of open paths on the boundary of Y. (Notice that by the connectedness of the weakly efficient set, the number of open
paths mentioned above is denumerable.) Let Hj with j ∈ J denote these open paths enumerated counterclockwise
along the boundary of Y, starting from the projection of F1(·). For any Hj , we denote the extreme points of its closure
by hj1 and hj2 . Notice that hj1 , hj2 ∈ WE(F1, F2) ∪ projY (F1) ∪ projY (F2). In what follows, we assume without loss
of generality that: (1) projY (Fi) ∩ int(Y ) = ∅ for i = 1, 2; and (2) F1(hj1) < F1(hj2), F2(hj2) < F2(hj1) for all j ∈ J .
(see Remark A.1)

The next example proves that we can have infinitely many elements in J. In fact, we show two strictly quasiconvex,
inf-compact functions, F1 and F2, such that, WE(F1, F2) intersected with a linear feasible region has an infinite, yet
denumerable number of isolated intersection points.

Example 3.3. Let F1(x) = ‖x − (11, 11)‖1 and let F2 be defined by its level curves. To define the level sets of F2 we
use a parametrization of the level value � ∈ [0, 11] (see Fig. 3(a)). The level set L� (F2, �) must satisfy:

1. L� (F2, �) is a closed, convex set.
2. L=(F2, �) is a smooth curve.
3. L� (F2, �) ⊂ L� (F2, �′) for all � < �′ and L=(F2, 0) = {(0, 0)}.
4. If � = �n,i , i = 1, . . . , 4, n ∈ N, then

L=

(
F2, �n,1 :=

5n∑
k=0

1.1−k

)
=
{

(x1, x2) : x2
1

(�n,1)
2 + x2

2

(�n,1 − 1.1−5n)2 = 1

}
, (4)

L=

(
F2, �n,2 :=

5n+1∑
k=0

1.1−k

)
=
{

(x1, x2) : x2
1

(�n,2)
2 + x2

2

(�n,2)
2 = 1

}
, (5)
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L=

(
F2, �n,3 :=

5n+2∑
k=0

1.1−k

)
=
{

(x1, x2) : x2
1

(�n,3)
2 + x2

2

(�n,3 + 1.1−(5n+3))2 = 1

}
, (6)

L=

(
F2, �n,4 :=

5n+3∑
k=0

1.1−k + 1.2−(5n+4)

)
=
{

(x1, x2) : x2
1

(�n,4)
2 + x2

2

(�n,4)
2 = 1

}
. (7)

Notice that for each n�1, with the values �n,i , i = 1, . . . , 4, we have defined four level curves: two ellipses and two
circumferences, such that, ellipse (4) is included in the region delimited by circumference (5), circumference (5) is
included in the region delimited by ellipse (6) and ellipse (6) is included in the region delimited by circumference (7).
Moreover, we have that L� (F2, �n,4) ⊆ L� (F2, �n+1,1) for n�1, see Fig. 3(a).

Since F2 is constructed to be strictly quasiconvex, we have that WE(F1, F2) is a connected curve joining (0, 0) and
(11, 11) consisting of the consecutive tangent points between the level sets of F1 and F2. We can see that the tangent
points between the level sets of F1 and those of F2 defined by (4), (5), (6) and (7) are represented in Fig. 3(b). For
each two tangent points included in the segment (0, 0)(11, 11) (tangent points corresponding to the level sets of type
(5) and (7)) there are alternatively one tangent point above the segment and another below the segment (tangent points
corresponding to the level sets of type (4) and (6)).

The level curves of F2 accumulate onto the circumference centered at (0, 0) and radius 11. Then, since the weakly
efficient set is connected there must exist infinitely many intersections of WE(F1, F2) with the segment defined by
(0, 0) and (11, 11).

The reader may notice that this example is not just a theoretical construction. In fact, the code in MATHEMATICA
that realizes the example is described in Implementation A.2 at the end of the Appendix.

Before obtaining the characterization result of the solution set for two functions, we give two technical lemmas
which proofs can be seen in the Appendix.

Lemma 3.2. It holds that

L� (Fi, Fi(hji
)) ∩ Hj = ∅, j ∈ J, i = 1, 2.

Lemma 3.3. If y ∈ Hj then y is dominated by some z ∈ WE(F1, F2)\(L� (F1, F1(hj1)) ∪ L� (F2, F2(hj2))).

Let J ′ ⊆ J be a set of indices such that j ′ ∈ J ′ if Hj ′ satisfies that

(WE(F1, F2)\(L� (F1, F1(hj ′
1
)) ∪ L� (F2, F2(hj ′

2
)))) ∩ ri(Y ) = ∅.

It is worth noting that for any j ′ ∈ J ′, such that hj ′
i
∈ WE(F1, F2) for i = 1, 2, the corresponding part of the chain

WE(F1, F2) that joins hj ′
1
, hj ′

2
must be outside of the set Y.

Theorem 3.2. If WE(F1, F2) ∩ Y �= ∅, then

WE(F1, F2; Y ) = (WE(F1, F2) ∩ Y ) ∪ projY (F1) ∪ projY (F2) ∪
⋃

j ′∈J ′
Hj ′ .

Remark 3.2. This characterization unifies, in the same sense as Theorem 3.1, the results of [3,8,11] (see
Example 3.4).

Proof. First of all, we have that any solution of the unconstrained problem belonging to the interior of Y is a solution
of the constrained problem. Indeed, if there exists y ∈ int(Y ) such that y ∈ WE(F1, F2; Y )\(WE(F1, F2) ∩ Y ) then
we have that

⋂2
i=1L<(Fi, Fi(y)) �= ∅ and

⋂2
i=1L<(Fi, Fi(y)) ∩ Y = ∅, but this is impossible by using convexity

arguments since y ∈ int(Y ). Therefore, WE(F1, F2; Y )\(WE(F1, F2) ∩ Y ) ⊆ �(Y ).
Moreover, since projY (F1) and projY (F2) are the sets of points ofY with the lowest objective value in F1(·) and F2(·),

respectively, these sets belong to the nondominated solution set WE(F1, F2; Y ). Thus, we get that (WE(F1, F2)∩Y )∪
(projY (F1) ∪ projY (F2)) ⊆ WE(F1, F2; Y ).
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Fig. 4. Illustration of Example 3.4.

Let j ∈ J\J ′ and y ∈ Hj . By Lemma 3.3, we have that there exists z ∈ WE(F1, F2)\(L� (F1, F1(hj1)) ∪
L� (F2, F2(hj2))) such that z dominates y. If z ∈ Y then y /∈ WE(F1, F2; Y ). If z /∈ Y , we first prove that ri(zy)∩�(Y ) �=
∅. On the contrary, assume that zy ∩ �(Y ) = {y}. Hence, since WE(F1, F2)\(L� (F1, F1(hj1)) ∪ L� (F2, F2(hj2))) is
a connected set (joining hj1 and hj2 ) with empty intersection with Hj , we have that the part of WE(F1, F2)\(L� (F1,

F1(hj1)) ∪ L� (F2, F2(hj2))) that joins hj1 and z goes around either L� (F1, F1(hj1)) orL� (F2, F2(hj2)). Assume
without loss of generality that it is around L� (F1, F1(hj1)). Let hzx∗

1
be the halfline with origin at z and crossing x∗

1

with x∗
1 ∈ X∗

1. Let z′ be such that z′ ∈ (
WE(F1, F2)\(L� (F1, F1(hj1)) ∪ L� (F2, F2(hj2)))

) ∩ hzx∗
1
. We have that

F1(x
∗
1 ) < F1(z

′) (recall that z′ /∈ L� (F1, F1(hj1))). Moreover, since WE(F1, F2) ⊆ L� (F2, F2(x
∗
1 )) ∪ X∗

1 ∪ X∗
2 we

have that F2(z)�F2(x
∗
1 ) and F2(z

′)�F2(x
∗
1 ). Thus, by the strict quasiconvexity of F2 on the segment zz′we have that

F2(z)=F2(z
′)=F2(x

∗
1 ). Hence, the part of WE(F1, F2) that joins z and z′ is the segment zz′ and zz′∩L� (F1, F1(hj1)) �=

∅ since x∗
1 ∈ zz′ ∩ L� (F1, F1(hj1)). However, this construction contradicts the fact that the part of WE(F1, F2) that

joins z and z′, namely zz′, has empty intersection with L� (F1, F1(hj1)).
Let w be such that w ∈ ri(yz) ∩ �(Y ). By the strict quasiconvexity of the two functions, we have that w dominates

y. Hence y /∈ WE(F1, F2; Y ). Therefore, Hj ∩ WE(F1, F2; Y ) = ∅ for all j ∈ J\J ′.
Finally, since (WE(F1, F2)\(L� (F1, F1(hj ′

1
)) ∪ L� (F2, F2(hj ′

2
)))) ∩ ri(Y ) = ∅ ∀j ′ ∈ J ′ and hj ′

1
, hj ′

2
∈ WE(F1,

F2; Y ) using the connectedness property of the set of weakly efficient points (see [24]), we have that Hj ′ ⊆ WE
(F1, F2; Y ) and the result follows. �

Example 3.4. Let a1=(4, 4), a2=(18, −11) and the feasible set,Y, the convex hull defined by the points {(0, 0), (20, 0),

(20, −7), (0, −7)}. For the functions F1(x) = ‖x − a1‖1 and F2(x) = ‖x − a2‖2, our goal is to determine the solution
set WE(F1, F2; Y ). This set is defined by the part of the solution set of the unconstrained case (the dashed line joining
a1 and a2 in Fig. 4) contained in Y and the path on the boundary of Y that connects the projections of both functions
onto Y with the unconstrained solution set on the boundary of Y (the points h41 and h12 in Fig. 4). Therefore, we can
see in Fig. 4, that the constrained solution set is the thick line joining the projections of both functions.

Example 3.5. Let a=(−20, 0), b=(20, 0) be two demand points; Fa(x, y)=‖(x, y)−a‖a and Fb(x, y)=‖(x, y)−b‖b

be their corresponding norms, centered at a and b, respectively, and defined by the following unit spheres:

4
5x2 + 8

√
3y + 2

5y2 + 2
5x(80 + √

3y) = −319,

4
5x2 + 8

√
3y + 2

5y2 − 2
5x(80 + √

3y) = −319.
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Y

ba

h22
h21

b̄ā

WE (Fa,Fb)

WE (Fa,Fb;Y)

Fig. 5. Illustration of Example 3.5.

Let Y be the feasible region which is the set delimited by the following ellipse:

x2

400
+ (y + 7.5)2

25
= 1.

Using MATHEMATICA we have computed all the unconstrained weakly efficient points for these two functions
(this set is given by the tangent points of the level sets of Fa and Fb when the radii vary). The geometrical locus of the
tangency points is defined by the following equation (the line joining a and b in Fig. 5):

−512
√

3 + 32
√

3

25
x2 − 352

5
y − 16

√
3

25
y2 = 0, 0�y�20.

We have that ā = projY Fa(x, y) = {(−17.2794, −4.9822)} and b̄ = projY Fb(x, y) = {(17.2794, −4.9822)}. The
intersection points of the solution set in the unconstrained case with the boundary of the feasible region are

{(−16.2702, −4.5923), (−9.6629, −11.8777), (9.6629, −11.8777), (16.2702, −4.5923)}.
Applying Theorem 3.2, we have that the set WE(Fa, Fb; Y ) is the thick curve joining ā (projection of Fa) and b̄

(projection of Fb) in Fig. 5. Notice that this set contains the path on the boundary ofY joining h21 =(−9.6629, −11.8777)

and h22 = (9.6629, −11.8777), since the unconstrained weakly efficient solutions that connect these two points are
outside the feasible region, that is,

(
WE(Fa, Fb)\

(
L� (Fa, Fa(h21)) ∪ L� (Fb, Fb(h22))

)) ∩ ri(Y ) = ∅.
All the details of the resolution of this example using the code in the Implementation A.1 or can be sent by e-mail

upon request of Appendix can be found in http://www.us.es/gpb97/curri_sevilla/index.

4. The general multicriteria problem

In this section, we study the three-criteria and the general k-criteria problems. In order to do that, we use the
characterization obtained in the previous section for the two-criteria case. The following result reduces the three-
criteria case to the analysis of the two criteria cases.

Theorem 4.1. If WE(F1, F2, F3) ∩ Y = ∅ then

WE(F1, F2, F3; Y ) =
⋃

i,j∈{1,2,3}
WE(Fi, Fj ; Y ).

http://www.us.es/gpb97/currisevilla/index
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Fig. 6. Illustration of Example 4.1.

Proof. Using the same arguments that we have already used in the proof of Theorem 3.1 we obtain that WE(F1, F2,

F3; Y ) ⊆ �(Y ).
On the other hand,

⋃
i,j∈{1,2,3}WE(Fi, Fj ; Y ) ⊆ WE(F1, F2, F3; Y ). Thus, it remains to prove that if y ∈ �(Y )\⋃

i,j∈{1,2,3}WE(Fi, Fj ; Y ) then y /∈ WE(F1, F2, F3; Y ). We prove it by contradiction. Let us assume that there exists

y0 ∈ �(Y )\∪i,j∈{1,2,3}WE(Fi, Fj ; Y ) such that y0 ∈ WE(F1, F2, F3; Y ).
Since, y0 ∈ Y and WE(F1, F2, F3) ∩ Y = ∅ we have by Theorem 2.1 that

⋂3
i=1L<(Fi, Fi(y0)) �= ∅; and thus

T⋂3
i=1L<(Fi ,Fi (y0))

(y0) �= {0} (recall that the tangent cone was defined in (3)). Then by Remark 5.3.2 in [25] we have

that T⋂3
i=1L<(Fi ,Fi (y0))

(y0) = ⋂3
i=1TL<(Fi ,Fi (y0))(y0). The sets TL<(Fi ,Fi (y0))(y0) are cones pointed at the same point

y0 for i = 1, 2, 3. Therefore, there exist, i0, j0 ∈ {1, 2, 3} such that

3⋂
i=1

TL<(Fi ,Fi (y0))(y0) = TL<(Fi0 ,Fi0 (y0))(y0) ∩ TL<(Fj0 ,Fj0 (y0))(y0).

Moreover, since y0 /∈ WE(Fi0 , Fj0; Y ) it holds by Theorem 2.1 that I<
i0j0

(y0)∩Y �= ∅ and this implies that I<
i0j0

(y0)∩
ri(Y ) �= ∅. This condition permits us to write (by Remark 5.3.2 in [25]):

∅ �= ri(TI<
i0j0

(y0)∩Y (y0)) = ri(TL<(Fi0 ,Fi0 (y0))(y0) ∩ TL<(Fj0 ,Fj0 (y0))(y0) ∩ TY (y0))

= ri(TL<(Fi0 ,Fi0 (y0))(y0) ∩ TL<(Fj0 ,Fj0 (y0))(y0)) ∩ ri(TY (y0))

= ri

(
3⋂

i=1

TL<(Fi ,Fi (y0))(y0)

)
∩ ri(TY (y0)) = ri(T⋂3

i=1L<(Fi ,Fi (y0))
(y0)) ∩ ri(TY (y0)).

This chain proves that the set ri(T⋂3
i=1L<(Fi ,Fi (y0))

(y0)) ∩ ri(TY (y0)) is not empty. Therefore, we choose z ∈ ri

(T⋂3
i=1L<(Fi ,Fi (y0))

(y0)) ∩ ri(TY (y0)) and the segment zy0 has nonempty intersection with
⋂3

i=1L<(Fi, Fi(y0)) ∩ Y .

Hence, there exists w ∈ ⋂3
i=1L<(Fi, Fi(y0))∩Y what implies that y0 /∈ WE(F1, F2, F3; Y ). This assertion contradicts

the initial hypothesis and the proof is complete. �

Example 4.1. We consider Example 3.1 where we have included a new point a3 = (22, 6.5) and the function F3(x) =
‖x − a3‖1. Our goal is to determine the solution set WE(F1, F2, F3; Y ). By Theorem 4.1, this set is defined by the
union of the solution set for each two functions. The entire solution set is the thick line path on the boundary of Y (see
Fig. 6).

In order to study the general case of k functions we give the following result which is a consequence of Corollary 2
in [26] and Theorem 4.1.
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Fig. 7. Illustration of Example 4.2.

Corollary 4.1. If WE(F1, . . . , Fk) ∩ Y = ∅ then

WE(F1, . . . , Fk; Y ) =
⋃

i,j∈{1,...,k}
WE(Fi, Fj ; Y ).

Now, we analyze the case where the intersection between the solution set in the unconstraint case and the feasible
region is not empty.

Theorem 4.2. If WE(F1, F2, F3) ∩ Y �= ∅ then

WE(F1, F2, F3; Y ) =
⋃

i,j∈{1,2,3}
WE(Fi, Fj ; Y ) ∪ (WE(F1, F2, F3) ∩ Y ).

Proof. Using a similar argument to the one used in the proof of the Theorem 3.2, we have that WE(F1, F2, F3; Y ) ∩
int(Y ) = WE(F1, F2, F3) ∩ int(Y ).

In addition, a similar argument to the one used in Theorem 4.1 proves that WE(F1, F2, F3) ∩ �(Y ) =⋃
i,j∈{1,2,3}

WE(Fi, Fj ; Y ) ∩ �(Y ). Hence the result follows. �

Example 4.2. Consider Example 3.4 where we have included a new point a3 = (14, 4) and a new function F3(x) =
‖x − a3‖2. Our goal is to determine the solution set WE(F1, F2, F3; Y ). By Theorem 4.2, this set is defined by the
unconstrained solution set included inY (the region enclosed by the dashed lines in Fig. 7) and the paths on the boundary
belonging to the constrained solution set for each pair of functions.

In order to study the general case of k functions, using Helly’s Theorem (see [27]) we obtain the following result.

Corollary 4.2. If WE(F1, . . . , Fk) ∩ Y �= ∅ then

WE(F1, . . . , Fk; Y ) =
⋃

i,j,l∈{1,...,k}

⎡
⎣(WE(Fi, Fj , Fl) ∩ Y ) ∪

⋃
s,t∈{i,j,l}

WE(Fs, Ft ; Y )

⎤
⎦ .
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5. Concluding remarks

In this paper we have developed different geometrical characterizations of the solution set for a general constrained
multicriteria location problem in two-dimensional spaces.

The approach followed in the paper unifies previous characterizations obtained for the set of weakly efficient solutions
of multicriteria location problems in two-dimensional spaces. In addition, it provides a geometrical description of this
kind of solution sets that allows us to actually construct it using the package MATHEMATICA.

The results presented in the paper can be extended further to the case of convex objective functions since the only
technical requirement used from strictly quasiconvex functions is the behavior along rays outside the set of minimizers.
In this regard, these two families of functions behave similarly and the proofs remain true.

Finally, from the characterization of the weakly efficient solutions of this paper and following a similar procedure
to the one in [28], one can develop a methodology to compute the set of efficient points by checking for efficiency all
the bicriteria weakly efficient chains. This issue will be investigated in a forthcoming work.
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Appendix A

Lemma A.1. Definition 3.1 is well-stated.

Proof. Conditions (i) and (ii) in Definition 3.1 only are fulfilled by the two paths of the boundary of Y connecting
projY (F1) and projY (F2). In order to show that the definition is well-established, we need to prove that the condition
(iii) is satisfied by only one of the two paths connecting projY (F1) and projY (F2).

In order to do that, we first prove that the set encl(C) is well-defined. Indeed, the sets WE(F1, F2) and x∗
1y1 ∪y1y2 ∪

x∗
2y2 are connected. Besides, x∗

1 , x∗
2 ∈ WE(F1, F2), then C is a connected set. Second, we have that encl(C) ∩ �(Y ) is

either empty or the segment y1y2. Hence, by the convexity of Y, we have that encl(C) contains at most one of the two
paths of the boundary of Y that joins y1 and y2. In addition, if encl(C) ∩ �(Y ) = ∅, by the convexity of Y, we have that
y1y2 ∈ �(Y )and y1y2 ⊆ �(projY (F1), projY (F2)). Thus, �(projY (F1), projY (F2)) is completely defined by condition
(iii). Obviously, if Y is unbounded there is only one path and condition (iii) is superfluous. �

Proof of Lemma 3.1. First, we have the following four assertions:

(a) Since y1, y2 ∈ Y , F1(y1) = F1(y2), F2(y1)�F2(y2), and using the convexity of Y and the level sets we have that

y1y2 ∈ I
�

12 (y2) ∩ Y .

(b) Since y2 /∈ WE(F1, F2), y2 ∈ Y and WE(F1, F2) ∩ Y = ∅ we have that

I<
12(y2) �= ∅.

(c) Since y2 /∈ projY (F1), we have that

L<(F1, F1(y2)) ∩ Y �= ∅.

(d) Since y2 /∈ projY (F2), we have that

L<(F2, F2(y2)) ∩ Y �= ∅.

Hence, using the convexity of I<
12(y2) and Y, we have that I<

12(y2) ∩ Y �= ∅ and it implies that y2 /∈ WE(F1, F2; Y ).
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Fig. 8. hy1y2 has nonempty intersection with C\ri(ȳ1ȳ2).

Now, we prove that y2 /∈ �(projY (F1), projY (F2)). Assume that y2 ∈ �(projY (F1), projY (F2)). Hence, the halfline
with origin at y1 and crossing y2, namely hy1y2 , has nonempty intersection with C\ri(ȳ1ȳ2), where C was defined in
(iii) of Definition 3.1 (see Fig. 8). Let c ∈ hy1y2 ∩ C\ri(ȳ1ȳ2). Then, by the strict quasiconvexity of F1 and F2 we get
that

F1(y1) = F1(y2)�F1(c),

F2(y1)�F2(y2)�F2(c).

Thus, since y2 /∈ WE(F1, F2) then c /∈ WE(F1, F2). Besides, since F1(c)�F1(y2) > F1(ȳ1) we have that c /∈ x∗
1 ȳ1.

Indeed, by the strict quasiconvexity of F1 and the fact that WE(F1, F2) ∩ Y = ∅ it holds that F1(x) < F1(ȳ1) ∀x ∈
x∗

1 ȳ1. By the same arguments, since F2(c)�F2(y2) > F2(ȳ2), we have that c /∈ x∗
2 ȳ2. Therefore, c /∈ C\ri(ȳ1ȳ2) and it

contradicts the hypothesis above. Hence, y2 /∈ �(projY (F1), projY (F2)). �

Remark A.1. Under the assumption that projY (F1)∩ projY (F2)=∅, the hypotheses made at the beginning of Section
3.2: (1) projY (Fi)∩int(Y )=∅ for i=1, 2 and (2) F1(hj1) < F1(hj2), F2(hj2) < F2(hj1) for all j ∈ J , are not restrictive.

The characterization of WE(F1, F2; Y )when projY (Fi)∩int(Y ) �= ∅ for some i=1, 2 reduces to study WE(F1, F2; Y ′)
where projY (Fi)∩int(Y ′)=∅ for i=1, 2, being Y ′ := L� (F1, F1(x

∗
2 ))∩L� (F2, F2(x

∗
1 ))∩Y with x∗

1 ∈ argminx∈X∗(F1)

F2(x) and x∗
2 ∈ argminx∈X∗(F2)

F1(x). Indeed, if projY (Fi) ∩ int(Y ) �= ∅ for some i = 1, 2, then it must occur that
X∗(Fi) ∩ int(Y ) �= ∅. On the other hand, we also have that, WE(F1, F2; Y ) ⊆ (L� (F1, F1(x

∗
2 )) ∩ L� (F2, F2(x

∗
1 )) ∩

Y )∪ ((X∗(F1)∪X∗(F2))∩Y ). Thus, we get that WE(F1, F2; Y )=WE(F1, F2; Y ′)∪ ((X∗(F1)∪X∗(F2))∩Y )where
Y ′ satisfies that projY (Fi) ∩ int(Y ′) = ∅ for i = 1, 2. Therefore, in order to obtain a geometrical characterization of
WE(F1, F2; Y ), we can assume, without loss of generality, that projY (Fi) ∩ int(Y ) = ∅.

Now we prove by contradiction the second part of this remark. If F1(hj1) = F1(hj2) two cases may occur:

(i) If hj1 ∈ projY (F1) then hj2 ∈ projY (F1). Thus, by the convexity of Y we have that hj1hj2 ⊆ projY (F1) ⊆ �(Y ).
Therefore, since Hj ∩(projY (F1)∪projY (F2)) = ∅ we have that Hj = �(Y )\hj1hj2 . This implies that projY (F2) ⊆
hj1hj2 , that is, projY (F1) ∩ projY (F2) �= ∅ which is impossible.

(ii) If hj1 ∈ WE(F1, F2)\projY (F1), since L<(F1, F1(hj1)) ∩ Y �= ∅, I<
12(hj1) = ∅ and I<

12(hj2) ∩ Y = ∅ then
F2(hj1) = F2(hj2). Hence, Hj ∩ (projY (F1) ∪ projY (F2)) �= ∅, but it is impossible by the definition of Hj .

Proof of Lemma 3.2. In order to obtain an easy understanding we prove the result for i=1. By the definition of Hj , we
have that hj1 ∈ WE(F1, F2) ∪ projY (F1) ∪ projY (F2). If hj1 ∈ projY (F1) by the definition of Hj the result follows. In
the following we assume, without loss of generality, that hji

/∈ projY (F1)∪projY (F2) for i =1, 2. If hj1 ∈ WE(F1, F2),
we distinguish two cases: (1) Hj �= ri(hj1hj2) and (2)Hj =ri(hj1hj2), we prove the result in both cases by contradiction.

If Hj �= ri(hj1hj2), suppose that there exists z ∈ L=(F1, F1(hj1)) ∩ Hj (observe that z �= hji
for i = 1, 2 because

hji
/∈ Hj ). Let y1z be the segment that joins y1 and z being y1 ∈ projY (F1). Using that z ∈ Hj and y1 /∈ Hj we have
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w

ȳ1

hj1

hj2

z

Fig. 9. w ∈ y1z ∩ hj1hj2 .

that w exists, such that, w ∈ y1z ∩ hj1hj2 (see Fig. 9). (Notice that w �= hji
for i = 1, 2, since y1 �= hji

and z �= hji

for i = 1, 2).
Besides, since F1(·) is strictly quasiconvex in the line through y1 and w, and F1(y1) < F1(w), because w ∈

Y\projY (F1), then F1(w) < F1(z) = F1(hj1). On the other hand, since F2(·) is strictly quasiconvex in the line that
joins hj1 and hj2 and F2(hj1) > F2(hj2) then F2(w) < F2(hj1). Therefore, w dominates hj1 . Nevertheless, this is a
contradiction because hj1 ∈ WE(F1, F2).

Now we study the second case, that is, Hj = ri(hj1hj2). Assume that there exists z ∈ L=(F1, F1(hj1))∩hj1hj2 . Since
F2(hj2) < F2(hj1), by the strict quasiconvexity of F2(·) in the line through hj1 and hj2 we obtain that F2(z) < F2(hj1).
Thus, since F1(hj1) = F1(z) and hj1 ∈ WE(F1, F2) we have that z ∈ WE(F1, F2). However, it is impossible because
Hj ∩ WE(F1, F2) = ∅. �

Proof of Lemma 3.3. By Lemma 3.2, Hj ∩ (L� (F1, F1(hj1)) ∪ L� (F2, F2(hj2))) = ∅, then F1(y) > F1(hj1) and
F2(y) > F2(hj2) for any y ∈ Hj . Hence, the result follows. �

Appendix B. The MATHEMATICA code

The following code computes the set of weakly efficient solutions WE(F1, F2; Y ) provided that the feasible set
Y ={(x, y): G(x, y)�0}. To simplify the presentation we have assumed that F1, F2 and G are differentiable functions.
The reader may notice that this does not mean loss of generality since the polyhedral case can be also handle identifying
linearity regions and applying the procedure below.

B.1. Implementation of the bicriteria case

B.1.1. Implementation A.1

1. Input:
F1[x_, y_] (function F1(x, y))
F2[x_, y_] (function F2(x, y))
G[x_, y_] (feasible region is given by G(x, y)�0.)

2. MATHEMATICA CODE:
% (Gradient vectors)
D1[x_, y_] = {D[F1[x, y], x], D[F1[x], y], y]};
D2[x_, y_] = {D[F2[x, y], x], D[F2[x], y], y]};
DG[x_, y_] = {D[G[x, y], x], D[G[x], y], y]};
% (Computation of WE(F1, F2))
WE[x_, y_] = Det[{D1[x, y], D2[x, y]}];
% (Intersection points between WE(F1, F2) and �(Y ))
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Solve[{WE[x, y] = =0, G[x, y] = =0}, {x, y}];
% (Computation of projY (F1))
G1[x_, y_] = Det[D1[x, y], DG[x, y]];
Solve[{G1[x, y] = =0, G[x, y] = =0}, {x, y}];
% (Computation of projY (F2))
G2[x_, y_] = Det[D2[x, y], DG[x, y]];
Solve[{G2[x, y] = =0, G[x, y] = =0}, {x, y}];
% (Graphics representation of the feasible region, WE(F1, F2), and the level sets L� (F1, 1) and L� (F2, 1))
> Graphics‘ImplicitPlot’
a = ImplicitPlot[F1[x, y] = =0, {x, x0, x1}, {y, y0, y1}];
b = ImplicitPlot[F2[x, y] = =0, {x, x0, x1}, {y, y0, y1}];
c = ImplicitPlot[G[x, y] = =0, {x, x0, x1}, {y, y0, y1}];
d = ImplicitPlot[WE[x, y] = =0, {x, x0, x1}, {y, y0, y1}];
Show[a, b, c, d]

Appendix C. The implementation of Example 3.3

The following MATHEMATICA code has been used to construct the level curves of the function F2 in Example 3.3.
In addition, it also computes the sequence of tangency points among the level curves of F2 and those of F1 when the
radius � varies. The final part draws the graphics that appear in Fig. 3.

C.1. Implementation of Example 3.3

C.1.1. Implementation A.2

>Graphics‘Colors’ d1 = {Circle[{0, 0}, 0.055]};
d2 = {Circle[{0, 0}, 0.055]};
d3 = {Circle[{0, 0}, 0.055]};
d4 = {Circle[{0, 0}, 0.055]};
ps = {{0, 0}}
For[k = 1, k < 20, k + +,
r1 = 11(1 − 1.1−(5k+1));
r2 = 11(1 − 1.1−5k);
r3 = 11(1 − 1.1−(5k+2));
r4 = 11(1 − 1.1−(5k+3));
r5 = 11(1 − 1.1−(5k+4));
r6 = 11(1 − 1.1−(5k+4)) + 1.2−(5k+4);
p1 = {{r12/(Sqrt[r12 + r22]), r22/(Sqrt[r12 + r22])}};
p2 = {{r32/(Sqrt[r32 + r32]), r32/(Sqrt[r32 + r32])}};
p3 = {{r42/(Sqrt[r42 + r52]), r52/(Sqrt[r42 + r52])}};
p4 = {{r62/(Sqrt[r62 + r62]), r62/(Sqrt[r62 + r62])}};
pt = Union[p1, p2, p3, p4, ps];
Print[r1, ” , ” , r2, ” , ” , r3, ” , ” , r4, ” , ” , r5, ” , ” , r6];
ps = pt;
a = Circle[{0, 0}, {r1, r2}];
b = Circle[{0, 0}, r3];
c = Circle[{0, 0}, {r4, r5}];
d = Circle[{0, 0}, r6];
f1 = {a};
h1 = Union[f1, d1];
d1 = h1;
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f2 = {b};
h2 = Union[f2, d2];
d2 = h2;
f3 = {c};
h3 = Union[f3, d3];
d3 = h3;
f4 = {d};
h4 = Union[f4, d4];
d4 = h4;
];
Show[Graphics[{{RGBColor[0, 0, 1], d1}, {RGBColor[0, 1, 0], d2},
{RGBColor[1, 0, 0], d3}, {RGBColor[1, 1, 0], d4}}], AspectRatio → Automatic];
Show[{{Graphics[Line[{{0, 0}, {2200, 2200}}]]}, {ListPlot[pt]}}];
Show[{{Graphics[Line[{{0, 0}, {2200, 2200}}]]}, {ListPlot[pt, PlotJoined → True]}}];
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